AI-driven Drug Safety Surveillance for Pharmacovigilance and Adverse Event Detection
PDF

Keywords

pharmacovigilance
real-world data

How to Cite

[1]
Dr. Jamal Ahmed, “AI-driven Drug Safety Surveillance for Pharmacovigilance and Adverse Event Detection”, Journal of AI in Healthcare and Medicine, vol. 4, no. 2, pp. 10–17, Sep. 2024, Accessed: Nov. 21, 2024. [Online]. Available: https://healthsciencepub.com/index.php/jaihm/article/view/89

Abstract

The rapid advancement of artificial intelligence (AI) has revolutionized various industries, including healthcare. One of the critical areas benefiting from AI is pharmacovigilance, where AI-driven approaches are increasingly being used for drug safety surveillance and adverse event detection. This paper explores the implementation of AI in pharmacovigilance to enhance the timely identification and mitigation of medication-related risks. We discuss the key challenges in traditional pharmacovigilance methods and how AI-driven approaches address these challenges. Additionally, we present case studies and examples of AI applications in drug safety surveillance, highlighting their effectiveness and potential impact on public health. Finally, we discuss future directions and opportunities for further research in this rapidly evolving field.

PDF

References

Saeed, A., Zahoor, A., Husnain, A., & Gondal, R. M. (2024). Enhancing E-commerce furniture shopping with AR and AI-driven 3D modeling. International Journal of Science and Research Archive, 12(2), 040-046.

Shahane, Vishal. "A Comprehensive Decision Framework for Modern IT Infrastructure: Integrating Virtualization, Containerization, and Serverless Computing to Optimize Resource Utilization and Performance." Australian Journal of Machine Learning Research & Applications 3.1 (2023): 53-75.

Biswas, Anjanava, and Wrick Talukdar. "Guardrails for trust, safety, and ethical development and deployment of Large Language Models (LLM)." Journal of Science & Technology 4.6 (2023): 55-82.

N. Pushadapu, “Machine Learning Models for Identifying Patterns in Radiology Imaging: AI-Driven Techniques and Real-World Applications”, Journal of Bioinformatics and Artificial Intelligence, vol. 4, no. 1, pp. 152–203, Apr. 2024

Talukdar, Wrick, and Anjanava Biswas. "Improving Large Language Model (LLM) fidelity through context-aware grounding: A systematic approach to reliability and veracity." arXiv preprint arXiv:2408.04023 (2024).

Chen, Jan-Jo, Ali Husnain, and Wei-Wei Cheng. "Exploring the Trade-Off Between Performance and Cost in Facial Recognition: Deep Learning Versus Traditional Computer Vision." Proceedings of SAI Intelligent Systems Conference. Cham: Springer Nature Switzerland, 2023.

Alomari, Ghaith, et al. “AI-Driven Integrated Hardware and Software Solution for EEG-Based Detection of Depression and Anxiety.” International Journal for Multidisciplinary Research, vol. 6, no. 3, May 2024, pp. 1–24.

Choi, J. E., Qiao, Y., Kryczek, I., Yu, J., Gurkan, J., Bao, Y., ... & Chinnaiyan, A. M. (2024). PIKfyve, expressed by CD11c-positive cells, controls tumor immunity. Nature Communications, 15(1), 5487.

Borker, P., Bao, Y., Qiao, Y., Chinnaiyan, A., Choi, J. E., Zhang, Y., ... & Zou, W. (2024). Targeting the lipid kinase PIKfyve upregulates surface expression of MHC class I to augment cancer immunotherapy. Cancer Research, 84(6_Supplement), 7479-7479.

Gondal, Mahnoor Naseer, and Safee Ullah Chaudhary. "Navigating multi-scale cancer systems biology towards model-driven clinical oncology and its applications in personalized therapeutics." Frontiers in Oncology 11 (2021): 712505.

Saeed, Ayesha, et al. "A Comparative Study of Cat Swarm Algorithm for Graph Coloring Problem: Convergence Analysis and Performance Evaluation." International Journal of Innovative Research in Computer Science & Technology 12.4 (2024): 1-9.

Pelluru, Karthik. "Prospects and Challenges of Big Data Analytics in Medical Science." Journal of Innovative Technologies 3.1 (2020): 1-18.

Tatineni, Sumanth, and Anirudh Mustyala. "AI-Powered Automation in DevOps for Intelligent Release Management: Techniques for Reducing Deployment Failures and Improving Software Quality." Advances in Deep Learning Techniques 1.1 (2021): 74-110.

Downloads

Download data is not yet available.