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1. Introduction to Autonomous Vehicle Navigation 

As we advance towards creating vehicles and robots that can operate over a wide array of 

environments both indoors and outdoors, the emphasis in autonomous vehicle navigation is 

moving away from conventional control based architectures towards using machine learning 

models. These models are designed with the capability to learn from first principles and hence 

can be applied across a broad array of scenarios. In a review by Dong et al., the authors have 

noted that recent advancements in machine learning have improved the capabilities of 

autonomous navigational systems in detecting objects, understanding the semantic map of 

the environment, and planning and executing optimized path trajectories. However, the 

mechanisms for safety and human-like interpretability of these models requires further 

attention. Furthermore to improve and encourage further advancements in machine learning 

based autonomous navigation, the authors have proposed a standardization of datasets and 

benchmark environments. Deep learning models can also be used for robot navigation in 

agricultural settings wherein we can design conservation tillage equipment on top of 

autonomous field robots to detect row crops and end-rows using image-based classification 

and detection algorithms. For these deep learning based systems to work in outdoor 

agricultural settings, they must overcome environmental challenges such as varying terrain, 

weather, and illumination conditions.Researchers have also proposed a navigation model that 

is fully based on learning-based strategies compared to the traditional offline training method 

to improve robot navigation by reducing redundancy. 

[1] [2]With the advancements in deep learning models and sensors, there has been significant 

progress in developing systems to navigate robots and autonomous vehicles [3] in complex 

unstructured environments without being reliant on any form of infrastructure. Vision-based 

navigation in particular has evolved from pre-designed control algorithms to learning-based 
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systems. Deep learning techniques such as convolutional neural networks (CNN), 

reinforcement learning, and imitation learning are being actively developed to accomplish the 

task of autonomous navigation. 

1.1. Challenges in Unstructured Environments 

embodiment and bootstrapping of 'common sense' in the term of dynamics models can be 

achieved seamlessly with learning paradigms. Deep learning neural networks can be trained 

with supervised, reinforcement, as well as self-supervised learning strategies over a variety 

of raw sensory inputs to inherently capture and encode high-order complex system dynamics. 

Classification learning over raw sensory input sequences can capture binary constraint 

regions on joint angular velocities (input changes), classifying them as safe or unsafe. This can 

be directly exploited to identify desired system basins-of-attraction where stable navigation 

is intended. Modeling continues over entire system state trajectories, which can directly 

capture the convex or non-convex-nature of planned/visible paths. System identification of 

unknown/ill-defined system-parameters, such as wheel–terrain compliance, along with 

camera intrinsic and wheel locations, can be directly learned from labeled image-action pairs. 

These learned self-supervised models can be directly learned from labeled image-action pairs. 

These learned self-supervised models can be far more accurate in modeling the system than 

traditional explicitly defined dynamical models. Hence these learning-based paradigms can 

achieve effective navigation control in unknown environments, without requiring any explicit 

human cognitive understanding of robot-environment dynamics. 

Among various learning-based navigation strategies, deep learning has especially shown 

immense significance as it can autonomously learn representations in complex real-world 

environments, leading to better generalizability, without conducting an explicit 

understanding of the surrounding environment or identifying explicit constraints on robot 

dynamics. Especially in the past decade, the substantial increase in learning capabilities of 

neural networks has led them to solve complex tasks in human-level performance. This has 

pushed researchers to build learning-based control frameworks where learning policies are 

utilized to directly map raw sensory observations to an action, without building explicitly 

specified robot models [4]. 

Autonomous navigation in unstructured outdoor environments, such as non-paved, off-road, 

natural terrains, poses significant challenges due to complex terrain and environmentally 
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induced disturbances [5]. While robots can consistently navigate in structured environments 

using path planning algorithms, these traditional approaches are limited in challenging 

unstructured terrains due to uncertain terrain dynamics, such as unpredictable disturbances 

experienced during motion (e.g., lateral slipping, rover rollover, terrain sinkage) and 

nonlinearity introduced by wheel–terrain interactions. Inspired by the brain, computation can 

be both planned and learned. In the context of off-road navigation, learning-based control 

strategies can be more adaptive and able to account for complex environmental factors 

impacting robot dynamics. 

2. Fundamentals of Machine Learning 

In recent years, instead of solving the perception of the environment, then planning and then 

finally controlling the motion, a method called end-to-end learning has been favored. In the 

autonomous navigation context, the drone or robot is trained to navigate the environment 

entirely based on sensory feedback using a suitable controller [6]. By removing this 

hierarchical structure in the collected training data by training the network to directly map 

input stimulus with an appropriate labeled output signal, researchers have shown remarkable 

success. Noticeably, works have include the usage of convolutional neural networks (CNNs), 

recurrent neural networks (RNNs) and long short-term memory networks (LSTMs) for this 

purpose, in most cases. 

[7] [3]Classically, the autonomous navigation framework for robots entails perception, motion 

planning, and control. Perception consists of determining object presence, movement, or both 

within the environment through sensory feedback. A robot then processes this information to 

codify a trajectory for its movement throughout the environment referred to as motion 

planning. Finally, the robot has to execute the designed trajectory with the use of control 

systems. This hierarchy of action has created a structured process for researchers in the field 

to target their efforts, aiming at developing a solution for each subsystem. 

2.1. Supervised Learning 

One extensively studied application of supervised learning in the machine learning and 

control literature is Dyna-Net. Dyna-Net is an extrapolation method, which is shown to 

effectively predict unexplored paths even in unfamiliar environments by learning a dynamics 

model. Although being able to predict multiple steps into the future, an important limitation 
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of Dyna-Net is that the quality of planned paths is high for only a short while until longer 

range multiple steps ahead predictions start diverging away from the ground truth. In this 

work, we improve the long-term utility of machine learning in uncertain environments by 

ensuring controlled exploration and reducing model error by improving the state 

representation. We consider the simple problem of point-to-point navigation, i.e., training the 

policy to perform two DOF planar navigation by supervised learning using synthetic data 

generated in an on-the-fly simulated environment. 

Recent machine learning literature on autonomous navigation in unstructured environments 

focuses mostly on supervised, reinforcement, or imitation learning paradigms. Supervised 

learning is, perhaps, the most common approach, in which the primary learning objective is 

navigation safety. Approaches based on supervised learning often employ Uncertainty-

Aware Learning to predict confidence or error estimates in environmental and control 

prediction models. Such methods can provide a principled mechanism to handle activestate 

uncertainty and can be used to generate more conservative steering commands. Training data 

in [ref: 459b9914-5ab9-4eb4-9393-e4b659b4aa0f, ref: 6b3ae222-a55a-4e72-af67-38b529946045] 

embodying supervised learning signals is necessary, but is it sufficient to address the 

complicated and uncertain nature of control and perception in outdoor terrain. These methods 

often become conservative and utilize rules that are agnostic to the dynamic and uncertain 

nature of outdoor terrain. Thus, models may require knowledge of real-time terrains so that 

possibilities of traversable and non-traversable terrains are updated in real-time [8]. 

2.2. Unsupervised Learning 

Reinforcement learning (RL) is an aspect of machine learning that correlates to a specific 

subarea of artificial intelligence, i.e., the study of algorithms and their implementations 

allowing algorithms to reach autonomous decision-making. Its main characteristic is the 

explicit emphasis on achieving long-run goals that are not known at the time of learning, but 

whose optimal setting can be learned through multiple states over time. Autonomous 

vehicles, for instance, benefit from reinforcement learning because they can learn optimal 

plans without requiring large training data sets, human demonstrations, or manually 

designed controllers by experts. The general framework of RL has three main components for 

training an autonomous system: the sensor modality (such as cameras or lidars), the action 

space that the vehicle should choose from, and a reward signal indicating the achievement of 
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the task. Unlike imitation learning, agents receive a global scalar feedback at sub-optimal 

states through simulation of the environment. So, RL can potentially surpass the skills of 

human drivers if provided with proper simulators [6]. Another method in unsupervised 

learning for robotic navigation is the use of latent variable models (LVM). The idea of 

unsupervised learning is to learn a so-called generative model of the training data (i.e., the 

states of the environment available in the logs). This generative model tries to explain the data 

as well as possible, such that it can be used for various purposes, such as imputing sensor 

measurements, future state prediction, or estimating entities of interest, such as world 

representations. This assists in learning high-level abstractions about the environment, a 

crucial capability for solving tasks that far outpace hand-engineered sensors and 

representations. The remaining challenge is to show that learned representations generalize 

to novel scenes. This is important for transfer from the training to the test setup, and may 

generalize across different environments. Using the learned latent space, model-based LVMs 

can outperform model-free approaches in terms of sample-efficiency by allowing the 

generation over multiple future steps. Given that learned models do not overfit, they can 

provide long-term predictions with a reduced probability of divergence that usually harms 

the effectiveness of model-based methods. Furthermore, they can be used for interpreting the 

reasoning behind the overall behavior of the system at each step of the execution [4]. 

2.3. Reinforcement Learning 

RL has been increasingly used in high-dimensional continuous state and action space and 

proves to be capable of learning robust navigation policies autonomously [6]. Underlying RL 

methods have been significantly evolving, especially in recent years with the successful 

application of deep neural networks. This super trend also results in the success of numerous 

applications, such as image classification, object detection and tracking, video game playing, 

and autonomous system control. In particular, deep reinforcement learning (DRL) has shown 

significantly superior performance in several challenging environments, where traditional RL 

algorithms could not operate well due to the curse of dimension and state-action distribution, 

as well as the complexity of real world sensory outputs. A DRL algorithm can autonomously 

learn a high-quality navigation policy by interacting with environment, and offers the massive 

potential of adaptive learning and superior generalization over expertwrittens scripts. As 

sated by related works, deep reinforcement learning based planning and control methods are 

now attracting rising attention by harness ing simulation environments for data-driven 
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learning. Chaplot et al. presented a way to train a DRL algorithm in a car-following 

environment with the look and lead strategy, which can be conducted in an open societal-

district simulation platform (OpenDS) [9]. 

Self-driving cars rely on highly detailed maps for localization and path planning, which are 

not suitable for unstructured terrains. Mapless navigation methods have better adaption to 

environmental changes [10]. Deep neural networks (DNN) can generate task-specific control 

signals by learning to mimic human expert controls, allowing the policy to function on its 

perceptions. However, this imitative/path imitation learning has various shortcomings such 

as sample complexity and lack of exploration. Both sample efficiency and exploration 

problems could be handled by reinforcement learning (RL) algorithms. In addition, the neural 

network policy involved in the RL algorithm learns to predict the value and optimizes 

parameters by temporal-difference learning, which is different from the gradient fitting 

performed in supervised learning. The neural network function can be trained according to 

real-world driving attributes, and RL method could improve the generalization of the system, 

and as well as the model-based and model-free combination, allowing trainings in complex, 

interconnected tasks. 

3. Sensors and Perception in Autonomous Vehicles 

In the context of sensing in autonomous vehicles, it is sufficient to mention proprioceptive 

and exteroceptive sensors. Control by exteroceptive sensors is a somewhat recent trend. This 

has to some extent been due to the availability of faster computation and cheaper high-speed 

external sensors for environment perception. The sensor systems of autonomous vehicles 

operating in familiar as well as unfamiliar terrains are very different. Those vehicles operating 

in unknown environments are called pioneer systems. The function of artificial perception is 

to gather that information of the surroundings of a vehicle at any point in time. This data 

assists in checking the current status of a vehicle. Depending on this information, a vehicle 

can take correct decisions, or the perception information can be observed by human experts ( 

[7]). 

Sensors are an integral part of any intelligent system. In the case of autonomous vehicles, 

sensors are used for both perception and localization. The knowledge of the surroundings 

determines how the vehicle should navigate through the environment, and this is based on 

sensor readings. The primary sensors used for perception and navigation are vision cameras, 
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LiDAR (Light Detection and Ranging), radar, ultrasonics, inertial measurement units (IMUs), 

and wheel encoders ( [11]). Among the localization systems, the primary ones are CRNs 

(Coordinate Reference Networks), GPS (Global Positioning System), and LiDAR. A few 

vehicles and research projects use the V2X (Vehicle-to-Everything) communication too. In this 

section, we detail the various types of sensors and perception methods to understand the 

environment of an autonomous vehicle 

3.1. Lidar Sensors 

The cameras are perhaps the most versatile sensors one might put on board an autonomous 

vehicle. In fact, their data (images) recollect a great amount of (object) information that, 

consequently, allows to accomplish various tasks such as classification, object detection, 

semantic and instance segmentation and interpolation of objects of interest. The data acquired 

by cameras is also the principal or complementary input to most map-based localization or 

SLAM algorithms. A radar is the fastest and most robust sensor among the three for sensing 

information by processing the reflection of radio waves sent. However, they are among the 

worst sensors in terms of their marginal accuracy and the amount of information they can 

provide. LiDAR sensors are an intermediate solution in terms of the three main sensors in 

terms of accuracy and margin of error. They are also active sensors, which reproduce laser 

beams and precisely measure distances [12]. Shaik, Mahammad, et al. (2020) explore user 

privacy in decentralized identity management using ZKPs and anonymization. 

Sensors in autonomous vehicles are classified into two classes: proprioceptive and 

exteroceptive, where the former only detects the vehicle and related events (e.g., temperature, 

speed, battery status, and so on). On the other hand, the exteroceptive sensors acquire 

environmental information that can be seen as landmarks in autonomous vehicle applications. 

As a result, they are also termed the vehicle’s eyes on the road.Template:P.S. Many algorithms 

involved in autonomous vehicles work on and rely on the data provided by these sensors. 

These include, among others, perception, localization and path planning. Among the sensors 

often used in the context of autonomous vehicles, cameras, radar sensors and LiDAR sensors 

play fundamental roles, even if different applications and trade-offs suggest (also) to use 

(slightly) different sensors and, possibly, to integrate their data [11]. A brief overview of the 

main sensors is given in what follows. 

3.2. Camera Systems 
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Autonomous vehicles need to perceive the road and surround environment in realtime in 

order to well navigate. In the last years, deep learningbased methods have significantly 

boosted object detection, identification, depth estimation, and semantic segmentation tasks. 

Convolutional neural networks (CNNs) are in particular subtracting a most effective way to 

perform these kind of tasks, overcoming more classic techniques such as HOG or sift. The 

recovered 3D bounding boxes for each detected object must be projected in a 2D image in 

order to be included as a new input for the system. To accomplish this, it is mandatory to have 

a geometric model of the camera included in the detections pipeline. Here we pose what is to 

our knowlegde the first attempt in the literature to perform this 2D projection using the 

stereographic projection in the spherical coordinates of the fisheye’s view [13]. 

[14] [15]The camera system has become a key component in autonomous vehicles, being a 

cheap, compact, and lightweight sensor, providing rich color information to assess the correct 

state of traffic lights, road signs, traffic cones, and other participants, also providing important 

information regarding the surrounding environment in order to avoid potential collusions. 

Object detection systems are used as the basic unit to get a most complete understanding of 

what is going on in the shared environment, allowing the system to know in advance about 

potential collisions or obstacles. In order to provide orientation to the autonomous vehicle, 

several approaches can be found in the literature. Some of these approaches are mainly 

focused on object detection, others use also semantic segmentation annotations. However, if 

a complete and precise 3D scene understanding would be provided, additional relevant 

information for the autonomous vehicle can be obtained; for example, once the 3D bounding 

box of an object is obtained, the distance between the object and the autonomous vehicle can 

be easily calculated. The use of 2D object detection frameworks combined with 3D 

information provided by the external sensors or through a post-processing stage can allow to 

obtain a complete object pose in the 3D world. 

4. Deep Learning for Autonomous Navigation 

By designing larger and larger neural networks, it has been possible to achieve promising 

results in various learning tasks [16]. However, since the task is inherently sequential, these 

agents must quickly learn to generalize to unseen state-action pairs. Unfortunately, this type 

of learning does not scale well to high-dimensional input, and often requires a large amounts 

of human supervision to provide good training data. The traditional approach to a task as 
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complex as navigating an environment from high-dimensional sensory input is to start from 

a model-free learning algorithm, which learns a policy from the environment’s observations 

and rewards. However, there have recently been several attempts to approach this task in 

more of a model-based reinforcement learning fashion. 

Autonomous navigation is crucial for robots to perform tasks in human environments where 

a priori maps and GPS signal are not accessible [17]. Emerging deep learning (DL) algorithms 

can be used to train and deploy networks for this purpose. This paper provides a 

comprehensive review of the existing deep learning models applied to robot navigation. We 

discuss decision-making solutions, the neural network architectures employed, and a survey 

on the sensors used in navigation. First, we review the conventional methodologies of 

navigation pipelines in robotic systems. Subsequently, we introduce deep learning-based 

perceptions and decision-making networks and discuss trained models used for robot 

navigation. 

4.1. Convolutional Neural Networks 

An important advantage of DNNs is their ability to accurately capture features at multiple 

scales in an image. This is achieved by design. The input passes through multiple stages of 

filtering, feature selection and ”pooling” to form a spatial hierarchy in the network. This 

property particularly suits image tasks, as sensitive features such as texture and finegrained 

shapes are accurately captured by lower-level filters, while higher-level ones focus on broader 

patterns and shapes. This makes it more conducive to predicting the 2.5D or 3D structure of 

the observed scene using monocular data. As a result, CNN based methods have been very 

effectively used for the subsequent task of depth estimation. 

Obtaining an abstract representation of the environment from monocular image inputs is a 

crucial task in autonomous navigation systems [18]. Such a representation, often referred to 

as semantic segmentation, infers object pixels from within the vehicle’s field of view. Semantic 

segmentation is attracting a considerable amount of interest in autonomous navigation. It 

solves the goal of perceiving obstacles in the scene from raw pixels, allowing for high-level 

decision-making processes to be designed on top of it. Furthermore, runtime performance can 

be optimized to be dependable for the learning process. 

4.2. Recurrent Neural Networks 
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Vehicles often need to navigate to the goal while continuously avoiding the potential obstacles 

in the environment despite changes. This information for trajectory prediction may also 

depend on a large history of input–output sequence data. Due to its ability to capture the 

dynamic response of the system well for a large sequence of sequence data, the authors mainly 

investigate the use of an RNN [19]. The researchers implement a simple trajectory prediction 

task for the WiBo-NRS training architecture. The system uses two networks, that is, a WiBo 

and an RNN, to learn human–robot interaction from the recorded human demonstrations. 

The resulting network is used to predict the forthcoming motion (WiBo) and the final collision 

estimator (NRS). 

Autonomous systems that operate in unstructured environments are becoming very popular. 

In this context, the task of autonomous navigation for vehicles is being vastly studied. Most 

of the recent studies report the use of the machine learning-based approach [20]. The use of 

the machine learning for autonomous vehicle navigation in unstructured environments 

provides a solution independent of any pre-defined features, or the navigable path, or the 

availability of the environment map. It provides highly discriminative features for capturing 

the information required for the trajectory prediction process. The most common and simple 

visualization tool used for visualization using 1-DoF (one-degree-of-freedom) is the normal 

example (NE) space [16]. The NE space provides a 3-segment curve. As speed is increased, the 

data is reduced to a 2-segment curve. The result is further simplified to a 1-segment curve at 

high speeds. For low-speed control, there is no need to predict. The motion pattern can be 

observed in the video frame. This paper demonstrates that RNN can be trained to effectively 

predict the vehicle’s motion trajectory using WiBo and NRS. A special loss function and a new 

normalization method are used to train the trajectory prediction model. 

5. Path Planning Algorithms 

There are various other machine learning based methods (such as OracleNet, MPNet, MPath, 

Policy Transfer Imitation, and AutoRL), where the authors use past experience and learning 

from demonstration strategies to obtain a collision-free path plan for system navigation 

without any prior knowledge of the underlying environment [21]. OracleNet performes 

inference through a recurrence relation established in a continuous space-time representation 

that models the occupancy of the environment. MPNet attempts to estimate the probability 

distribution of the next state given the current state and goal employing a probabilistic 
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feedforward neural network that considers the environment conceptually abstract, which 

implies faster inference. Another approach, called “Learning to Navigate in Cities Without a 

Map”, reportedly uses imitation learning and reinforcement learning to learn to follow 

recorded paths from humans driving in a real car and to navigate to a goal using only past 

navigation as a source for learning. Finally, “Learning Model Predictive Control for Vision-

Based Autonomous Driving on the F1/10” implements a vision-based path planner for real-

world autonomous driving. 

Prior work on path planning in robotics has focused on different algorithm design paradigms, 

targeting various aspects of robot navigation as well as exploration and search in unknown 

environments. The classic A* search algorithm is widely used for computing shortest paths in 

discrete grids, where the computation time of this search algorithm is highly sensitive to the 

size of the environment. The A* algorithm is unable to provide optimal solutions in 

continuous state spaces, which need to be embedded into discretized graph representations 

that can be time consuming [22]. Sampling-based algorithms, such as Probabilistic Roadmap 

Methods (PRM) and Rapidly-exploring Random Trees (RRT), are applicable for continuous 

domains and are well-suited for high-dimensional configuration spaces with constraints and 

nontrivial robot dynamics but are inherently offline in nature and thus not efficient to quickly 

solve for the next robot state practically. 

5.1. A* Algorithm 

The A* algorithm employs g(n) to represent the cost of the best path between O and node n 

found so far. While f(n) = g(n) + h(n) is the function representing the candidate for the cheapest 

path solution. h(n) is the heuristic function and its purpose is to estimate the cheapest cost of 

the path from current node n to the target node T. Different types of heuristics can be utilized, 

taking into consideration the potential of growth at any node. A simple choice is to apply the 

Manhattan method, for instance, and compute the estimated optimal cost of the global path 

between T and n. The Manhattan method produces the cost to be labeled by three never 

traveling diagonally, or dumb costs concerning the East, West, South, and North directions. 

Though a fast and reasonable heuristic, different sorts of effective heuristics can easily replace 

the Manhattan method. Furthermore, the greatest drawback of A* is the drive by the heuristic 

function and if this function is poorly chosen, then the effect of finding the solution will be 
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poor. Selecting the efficient heuristic function is a major concern for reducing the search space 

to obtain success, accuracy and right solutions. 

The A* algorithm [23] was first introduced in 1968 and is commonly used for collision-free 

navigation of mobile robots. A* is an extension of Dijkstra's algorithm with the advantage of 

exploiting a heuristic function, which makes it scalable for large environments. The input for 

A* is the grid map representing the world along with its legend, a graph representing the cells 

of the map, and origin and target nodes. A* generates a walk that begins at O and travels to T 

where the walk never overlaps with any grid cell. 

5.2. Rapidly-exploring Random Trees (RRTs) 

Full text is spelled out grammatically, coherent and informational. 

Since the collision between two vehicle or between vehicle and obstacle leads to many 

accidents, it is extremely important to be able to identify obstacles and to perform path-

planning in dynamic and unstructured environment [24]. It is very challenging that attaining 

maximum coverage and avoiding moving obstacles in different environment such as static, 

dynamic, uneven and structured environments is not easy due to the complexity in different 

types of environments. In order to overcome these difficulties in rapid, an efficient sampling-

based path planner is introduced for large-scale or high-dimensional complex environments, 

known as rapidly-exploring random trees (RRTs) [25]. It is widely considered because the 

main work associated with Nearest Neighbor Search (NNS) and Collision Checking (CC) is 

offloaded to tree assembling which happens very differently from other path planning 

algorithms such as A*, D* or Dynamic Window Approach (DWA). A*. In RRT, a tree consists 

of nodes, which are the configuration of the robots and the edges which connects these nodes. 

Some advantages of RRTs over other sampling-based techniques, including PRM− and D* are 

that (I) once the tree is grown it guarantees to find the solution. However, on the basis of tree 

density the cost could be high or low, (II) tree primarily established to bias. RRT mainly 

founded to move quickly into unsearched areas, (III) for a given workspace dimension, RRT 

is spatial complexity is moderate and doesn’t have to made observations in whole 

environment. It avoids large and computationally expensive observations [26]. With respect 

to these adavantages, by providing solution of the high-dimensional problems, many of the 

RRT modifications tries to implement successfully. 
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6. Simulators and Testing Environments 

Real-Data to Sim Data A tracking and object classification pipeline implemented in used a 

simulation data-driven approach for synthetic data generation. The pipeline incorporates 

LIDAR and camera data and was mainly validated with real-world data recording at test-

courses in Vigo, Spain, and Gteborg, Sweden. This approach could mark the beginning of a 

more converged workflow between reality-based data acquisition and synthetic data 

generation. It can be expected that the simulation data generation based on real-world data is 

an ideal use case for (possibly) unsupervised domain adaptation. i.e., the simulated images 

can be used to enhance a neural network trained for real-world test data. Other works 

leveraged the modularity of simulator frameworks to transfer learned representations from 

sensor data simulated in a basic digital twin to sensor data from a more detailed digital twin 

of a specific intersection or road section. This work represents a good way of combining the 

high-fidelity promise of game engines with the reproducibility of a simulation-based 

perception pipeline and the data-driven logic behind the perception module. 

Machine learning-based approaches help in learning how to navigate in unstructured 

environments without explicitly hand crafting algorithms and representations [27]. Using 

machine learning, the onboard computer can process synthetic data generated by generic 

vehicle simulation software such as CarMaker. The synthetic data that is used for parameter 

tuning or for training machine learning models is simulated with animation software. 

Moreover, the recent release of open-source simulators designed for autonomous vehicle 

testing and research is of great interest to the development and research community. One 

example is AirSim developed by Microsoft that has an API integrated with the drone and 

racing car simulators [28]. A perception stack developed by Aptiv that has been fully 

integrated with Autoware was extensively used in [7]. The task of the perception stack is to 

make sense of the raw LIDAR, camera, and other sensor inputs and segment meaningful 

information from it for machine learning-based detectors, trackers, and classifiers. 

6.1. CARLA Simulator 

If the pedestrian reaches the sidewalk or the grass area it is removed from the simulation. 

Pedestrians are considered part of traffic. When a pedestrian appears in the close vicinity of 

the ego vehicle posing a potential danger, it issues a negative reward. To prevent the AV from 

traveling too fast reasons of safety and traffic law, the simulator controls the throttle of the 
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ego vehicle. The car's speed should stay within the limits, otherwise a speed error reward is 

generated. In the case of an emergency braking situation, the AV receives an emergency stop 

command exceeding normal deceleration limits, resulting in a crash. Therefore, in addition to 

the maximum and minimum values of the legal advices, the speed regulation function limits 

its generation in the simulation environment. 

The CARLA simulator [29] has been used for the training and evaluation of the full model. 

The CARLA simulator offers different environments, like the Town01 and the Town02, in 

which the AV system can interact with various traffic scenarios. Vehicles in the simulation 

environment vary from small cars over lorries to bicycles and pedestrians. All in all, CARLA 

provides many stimuli that an autonomous vehicle can expect in a real-world environment. 

Different sensors, like RGB cameras, depth cameras, and LiDAR devices, are available to 

observe the environment. These sensors deliver the perceptual input that the AV should 

understand. An OpenDrive file, describing the road network of the Town01 environment [30], 

was used to plan the ego vehicle's route. College Lane has been chosen, as it is a long straight 

road with complex crossroad structures, traffic lights, and other road users that challenge 

perception modules. Using the provided Python API, which allows to interact with the 

environment, it is possible to place an autonomous vehicle on this route and to feed the 

simulated sensors with these data. 

7. Ethical Considerations in Autonomous Vehicle Development 

It is expected that the positive societal and economic effects of autonomous vehicles (AVs) 

will be utmost for the general public. However, these presumed benefits of AVs are also 

accompanied by numerous problems and issues that need to be resolved. The ethical 

dilemmas do not just only refer to the end users and their ethical preferences, but also any 

participant in any interaction has the duty to behave ethically and respect the rules and duties 

that have been established in the society, informed by its values, religion, norms, and 

standards [31]. This is also valid for the AVs. They should be designed and developed having 

the right doctrines, norms, rights and duties, standards in the mind of that society in which 

they are supposed to operate and require manufacturer accountability, transparency and 

allocation of all intellectual safety and security resources that are necessary in order to 

minimize risks and contribute to the successful introduction of AVs to human society. 
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Autonomous vehicles (AVs) are seen as the advancement of vehicle control systems, using a 

set of technologies and machine learning methods to control different functions in the vehicle, 

offering solutions for technically complex and comprehensive situations that are beyond 

traditional vehicle dynamics control tools. The development of AV technologies will improve 

cars' safety, road use efficiency, and opportunities for the safe and comfortable mobility for 

all users, but will also generate new challenges to ensure the global benefits of the new 

transportation system. One further important issue is the technological development 

background includes various hidden but possible risks, for example ethical dilemmas, in 

autonomous vehicles (AV) development, proving a major challenge for industries, OEMs, 

suppliers, and the whole AV ecosystem [32]. 

8. Future Directions and Emerging Technologies 

Current research in real-time segmentation is focused on tuning the speed–accuracy tradeoff 

across the range of inputs from inexpensive consumer camera hardware to event cameras. 

Technique advances in this field are expected in terms of attainable ego- and object-vehicle 

velocities as well as optical signal range, both for day and nighttime operation of autonomous 

vehicles. The primary objective of Segmentation in Autonomous Vehicle Navigation (SAVN) 

is to enable robust and accurate estimation of perceptually homogeneous space regions from 

raw sensory inputs, where the regions of the road surface and its adjacent environment are 

prone to be regarded as semantic classes [33]. Future research topics in this area include a 

robust transfer from synthetic and day-time downstream semantic quality metrics, especially 

for the scenario with long and fast moving vehicles. The key to enhancing current visual place 

recognition (VPR) algorithms in open-set deployment environments is to establish the 

simultaneous localization and mapping (SLAM) frameworks that are robust to the presence 

of open-world semantic classes. In the case of the highly unconstrained operating 

environment, the current probabilistic approaches are prone to fail and indications of the 

unneeded map updates may occur in the most unexpected places. Future research in VPR 

quality in open-set scenarios would better focus on uplifting the VPR quality directly by 

addressing the problem of deployment environmental segmentation. One potential future 

direction in this context is to replace the semantic-based segmented appearance features in 

the GeoTrack/Image-SDHIV with more generic appearance features extracted by the 

pretrained visual generation model along with the corresponding semantic features. 

https://healthsciencepub.com/
https://healthsciencepub.com/index.php/jaihm


Journal of AI in Healthcare and Medicine  
By Health Science Publishers International, Malaysia  99 
 

 
Journal of AI in Healthcare and Medicine  

Volume 2 Issue 1 
Semi Annual Edition | Jan - June, 2022 

This work is licensed under CC BY-NC-SA 4.0. 

The current literatures provide the evolution of machine learning algorithms for autonomous 

vehicles in the past decade. There are some challenges and limitations need to be addressed 

for machine learning-based autonomous navigation in unstructured environments, such as 

machine learning-based algorithms for automotive perception, planning, and control to deal 

with complex environments, obstacle modelling and prediction to enhance safety and 

reaction, and system failures resilience for reducing accidents and economic costs [34]. What 

are the promising strategies in autonomous navigation research? What future research in 

machine learning and computer vision is demanded? To answer these questions we discuss 

the future directions of machine learning-based autonomous vehicle navigation in 

unstructured environments in some direction. In the automotive perception field, semantic 

segmentation by using ML-based segmentation is the most popular in automotive 

segmentation [35]. 
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